
Ostabolin-C™

Parathyroid Hormone Analogue Treatment of Osteoporosis Treatment of Psoriasis

OSC

L-Seryl-L-valyl-L-seryl-L-glutamyl-L-isoleucyl-L-glutaminyl-L-leucyl-L-methionyl-L-histidyl-L-asparaginyl-L-leucyl-glycyl-L-lysyl-L-histidyl-L-leucyl-L-asparaginyl-L-seryl-L-methionyl-L-glutamyl-L-arginyl-L-valyl-L-glutamyl-L-tryptophyl-L-leucyl-L-arginyl-L-lysyl-L-leucyl-L-leucyl-L-glutamyl-L-aspartyl-L-valinamide C-5.22-N.6.26-lactam

[Leu²⁷]Cyclo(Glu²²-Lys²⁶)hPTH(1-31)NH₂

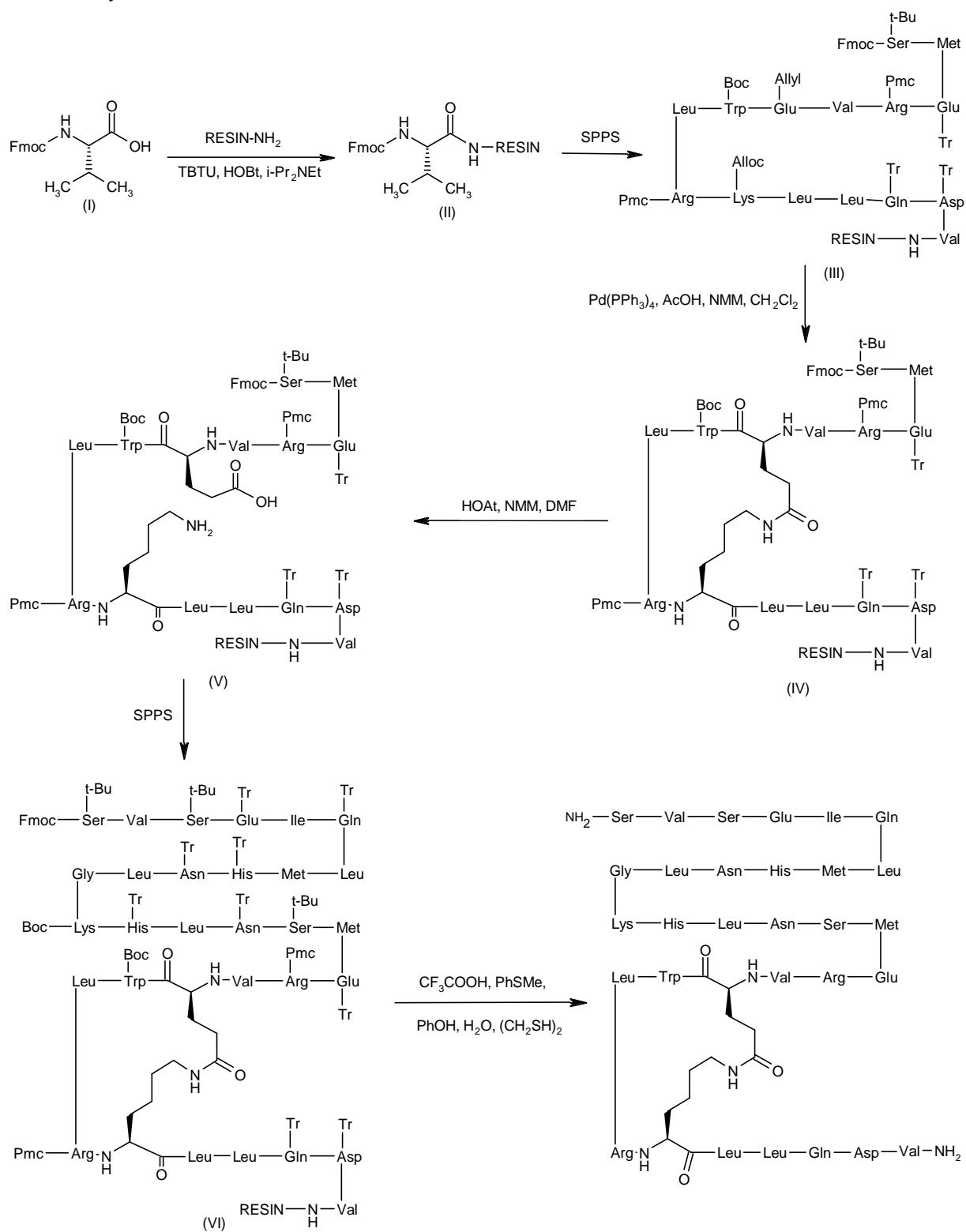
C₁₆₂H₂₆₇N₄₉O₄₅S₂
Mol wt: 3685.2886

CAS: 188899-65-2
EN: 352957

Abstract

Available treatment for osteoporosis includes agents that reduce bone resorption and those that increase bone formation, such as parathyroid hormone (PTH). The PTH approach is a particularly attractive strategy for reversing the course of osteoporosis in individuals who already have substantial bone loss. PTH, however, may be associated with adverse effects on radial bone density and it may act peripherally, inducing unwanted effects. Researchers have focused efforts on the synthesis of novel PTH analogues in an attempt to discover more effective and safer molecules. The smallest osteogenic PTH fragment synthesized was the linear hPTH(1-31)NH₂ (Ostabolin), which exerted stimulatory effects on trabecular bone similar to larger fragments but was less effective than hPTH(1-34) when given in suboptimal daily doses. Modifications were made on the peptide in an attempt to increase its anabolic efficacy and yielded the cyclic lactam [Leu²⁷]cyclo(Glu²²-Lys²⁶)-hPTH(1-31)NH₂ (OSC, Ostabolin-C™). Ostabolin-C™ was more potent than hPTH(1-31)NH₂ in stimulating adenylyl cyclase and more effective in stimulating trabecular bone growth at suboptimal daily boluses. Ostabolin-C™ was chosen for further development as a treatment for osteoporosis.

Synthesis


Ostabolin-C™ is synthesized by solid-phase peptide synthesis on a Tentagel® amino resin. Coupling of N-Fmoc-L-valine (I) to the solid support is performed manually by using TBTU and HOBr to provide the resin-bound valine (II). Subsequent coupling steps with the appropriate amino acids utilizing an automated peptide synthesizer leads to the protected pentadecapeptide resin (III). This is then treated with Pd(PPh₃)₄ and NMM to remove the Glu²² allyl ester and the Lys²⁶ Alloc group, yielding (IV), which is cyclized to the lactam (V) in the presence of HOAt and NMM. The peptide resin (V) is then subjected to further coupling steps in the automated peptide synthesizer to afford the fully protected peptide resin (VI). The title peptide is finally obtained by deprotection and simultaneous resin cleavage in the presence of reagent K (trifluoroacetic acid, thioanisole, phenol/water and ethanedithiol) (1-3). Scheme 1.

Background

Osteoporosis is the most common type of metabolic bone disease and is characterized by low bone density and structural deterioration of bone microarchitecture, which leads to bone fragility and increased susceptibility to fractures. The International Osteoporosis Foundation (IOF) estimates that there are 75 million people with osteoporosis in the U.S., Europe and Japan combined. In 2004, the U.S. Surgeon General reported that there were 10 million individuals in the U.S. alone diagnosed with osteoporosis and another 33.6 million with low bone mass at high risk for the disease. Women are particularly affected by the disorder, with more than 200 million affected worldwide. However, between 1 and 2 million men in the U.S. also have the disease, with another 13 million exhibiting low bone mass (4, 5).

Agents available for the treatment of osteoporosis include estrogens, bisphosphonates and calcitonin, which

Scheme 1: Synthesis of Ostabolin-C™

all act by reducing bone resorption, and fluorides and parathyroid hormone (PTH) and its analogues, which increase bone formation. PTH is a naturally occurring anabolic peptide that mediates bone metabolism endogenously and has been shown to exert osteogenic activity in dogs, rats and osteoporotic humans. Studies have demonstrated that intermittent administration of PTH results in anabolic effects, while continuous administration of high doses causes catabolic effects. The PTH approach for the treatment of osteoporosis is a particularly attractive strategy for reversing the course of the disease in individuals who already have substantial bone loss, have experienced a fracture or are at high risk for fracture. Analysis of results from several clinical studies in which subjects with postmenopausal or glucocorticoid-induced osteoporosis were administered PTH revealed that treatment reduced the incidence of vertebral fractures and increased spinal bone density. However, PTH may be associated with adverse effects on radial bone density and its effects on nonvertebral fractures are unknown. Moreover, in addition to regulating bone, kidney and intestinal calcium metabolism, high doses of PTH may act peripherally, inducing unwanted effects on vascular tone, cardiac muscle contraction, hematopoietic cell differentiation and nervous tissue function. Thus, researchers have focused efforts on the synthesis of novel PTH analogues in an attempt to discover more effective and safer therapies for osteoporosis (4-9).

Teriparatide (rhPTH[1-34], Forteo™, Lilly), introduced in 2002, was the first PTH analogue to be marketed and several others are currently under active development for the treatment of osteoporosis, as shown in Table I. Until recently, the smallest PTH fragment to exert osteogenic activity was hPTH(1-34). A smaller fragment, hPTH(1-31)NH₂ (Ostabinin), was then discovered and shown to have the same marked osteogenic effects on trabecular bone as the larger fragment when injected as daily boluses. However, when administered s.c. at suboptimal doses, hPTH(1-31)NH₂ was as effective as rhPTH(1-84) but less effective than hPTH(1-34) in stimulating femoral trabecular bone growth in ovariectomized (OVX) rats (10-14).

Consequently, an attempt to increase the anabolic efficacy of hPTH(1-31)NH₂ was made by incorporating two modifications. To increase the hydrophobicity of the receptor-binding hydrophobic face of the C-terminal amphiphilic α -helix, the polar Lys²⁷ was replaced with the apolar Leu²⁷. A lactam linkage was then made between Glu²² and Lys²⁶ to stabilize the molecule in an optimal

receptor-binding configuration. Both modifications may also contribute to the molecule's increased resistance to proteases. The resulting novel fragment, [Leu²⁷]cyclo-(Glu²²-Lys²⁶)hPTH(1-31)NH₂ (OSC, Ostabinin-C™), was more potent than hPTH(1-31)NH₂ in stimulating adenylyl cyclase in rat osteosarcoma (ROS) 17/2 osteoblast-like cells and more effective in stimulating trabecular bone growth in OVX rats when administered as suboptimal daily boluses. Ostabinin-C™ was chosen for further development as a treatment for osteoporosis (2, 15).

Preclinical Pharmacology

Ostabinin-C™ was 6 times more potent than hPTH(1-31)NH₂ in stimulating adenylyl cyclase activity in ROS 17/2 cells ($EC_{50} = 3.3 \pm 0.3$ nM vs. 19.9 ± 3.9 nM) (2, 15). When administered to rats i.v. (0.8 nmol/100 g), both Ostabinin-C™ and hPTH(1-31)NH₂ transiently lowered blood pressure by about 30 mmHg within 1-2 min of dosing. However, when administered s.c., significantly less hypotensive activity was observed, although Ostabinin-C™ induced slightly greater hypotension than the parent peptide (2).

A study using OVX rats showed that preventive treatment with Ostabinin-C™ or hPTH(1-31)NH₂ (0.6 or 0.8 nmol/100 g s.c. once daily starting at the end of week 2 postovariectomy before evidence of significant trabecular bone loss and continuing for 6 more weeks) prevented the OVX-induced distal femoral trabecular volume loss of about 51% observed in controls. In fact, treatment with either agent significantly increased trabecular volume to supranormal levels (1.1 ± 0.1 and 1.2 ± 0.2 mm³, respectively, vs. 0.34 ± 0.02 mm³ in OVX controls and 0.72 ± 0.04 mm³ in sham OVX controls). Another experiment was performed in which OVX rats were treated for 6 weeks with Ostabinin-C™ starting at the end of the ninth week postovariectomy when animals exhibit large distal femoral trabecular bone loss. At the end of the 6 weeks of this restorative treatment, control OVX animals displayed a significant 75% loss of trabecular volume (0.72 ± 0.05 to 0.18 ± 0.02 mm³). In contrast, the trabecular volume of Ostabinin-C™-treated animals returned to normal values (0.74 ± 0.04 mm³). Ostabinin-C™ was significantly more effective than hPTH(1-31)NH₂ in the restoration protocol and was also more potent than a bicyclic PTH analogue, indicating that the introduction of a second cyclic lactam linkage does not increase osteogenic activity. Estratriene-3-ol, an estrogen reported to potently stimulate bone growth in gonad-intact and OVX mice, was ineffective in

Table I: PTH analogues under development for the treatment of osteoporosis (from Prous Science Integrity®)

Drug	Source	Phase
ALX1-11 (Preotact™, Preos®)	NPS Pharmaceuticals/Nycomed Pharma	L-2006
CHS-13340/SUN-E3001	Chugai Pharmaceutical/Daiichi Asubio	II
Ostabinin-C™	Zelos Therapeutics	II
PTH(1-34)	Nastech/Procter & Gamble	I
BA-058 (formerly BIM-44058)	Radius (formerly Nuvios)	I
PTH-131A (768974)	GlaxoSmithKline/Unigene Laboratories	I

this model when administered at doses replacing full estrogen functions (15-17).

Similar experiments using preventive and restorative treatment protocols (0.6 nmol/100 g s.c. once daily) showed that Ostabinol-C™ was significantly more effective than hPTH(1-31)NH₂ in preventing OVX-induced loss of femoral trabecular volume and in increasing trabecular thickness in OVX rats with severely depleted femoral trabecular bone. Higher doses of 2 nmol/100 g were also effective (18, 19).

Prolonged low-dose restorative infusion of Ostabinol-C™ (0.05, 0.1 and 0.5 nmol/100 g/day = 0.72, 1.48 and 7.36 µg/day, respectively, via Alzet minipumps starting at the end of the ninth week postovariectomy) for 6 weeks had no effect on femoral cancellous bone volume in OVX rats. Infusion of the agent also did not prevent OVX-induced reductions in femoral trabecular thickness or number. Results indicate that daily injections are required for the osteogenic activity of Ostabinol-C™ (20).

Ostabinol-C™ (1 or 2 nmol/100 g once daily for 6 weeks starting 2 weeks postovariectomy) was effective in stimulating vertebral and tibial bone growth in OVX rats. Treatment with the agent also prevented trabecular volume loss in the L5 vertebrae. hPTH(1-31)NH₂ was effective in stimulating vertebral bone growth at doses 10-25 times higher. Restorative Ostabinol-C™ treatment (starting 9 weeks postovariectomy) was also effective in increasing trabecular bone volume and thickness and bone mineral density (BMD) in the L5 vertebrae, and in increasing BMD of the L1-L4 vertebrae and tibiae. A minimal increase in pelvic BMD was also seen with treatment (21).

Ostabinol-C™ not only preserved bone structure after OVX but also inhibited bone resorption both *in vivo* and *in vitro*. Treatment of OVX rats with Ostabinol-C™ (6, 10 and 20 nmol/kg/day) increased femoral trabecular thickness and reduced marrow space. The agent also significantly increased mineralizing surfaces and bone formation rates and decreased osteoclast surface density, indicating both stimulation of osteoblast lineage cells and inhibition of mature osteoclasts. Experiments performed *in vitro* using rat calvaria organ and cell cultures revealed that intermittent pulsing with the agent significantly increased parietal bone thickness and the rate of bone nodule formation, while decreasing calvaria eroded space and TRAP stain intensity. In addition, treatment with Ostabinol-C™ increased osteoblast differentiation markers but decreased osteoclast markers. Ostabinol-C™ was more potent than hPTH(1-31)NH₂ or hPTH(1-34)NH₂ in these assays (22).

Ostabinol-C™ effectively increased bone formation and strength in gonad-intact rats. Treatment with doses of 2, 10 or 25 µg/kg s.c. for 26 weeks was well tolerated, with no evidence of antibody formation or hypercalcemia. Ostabinol-C™ increased levels of the bone formation marker osteocalcin; the bone resorption marker urinary deoxypyridinoline was unchanged, while C-telopeptide levels increased in the highest dose group. Moreover, all doses of the agent increased femoral and lumbar verte-

bral bone mass and significant increases in lumbar vertebral bone strength were also observed; femoral bone strength at the diaphysis and femoral neck also increased, although results did not reach significance. Tibial cancellous bone volume, mineralizing surfaces and surface referent bone formation rates increased with treatment. No effects were observed on bone resorption. The highest dose increased femoral diaphysis cortical area and cortical thickness in females (23).

The effects of intermittent Ostabinol-C™ treatment on fracture healing, including tibial fracture strength, callus dimensions and callus tissue mechanical quality, were examined in rats after 8 and 16 weeks of healing. Animals were treated (15 nmol/kg/day s.c.) during the first 8 weeks of healing after fracture. During the first 8 weeks, fracture strength and callus volume increased with treatment such that ultimate load, ultimate stiffness and callus volume were enhanced 66%, 58% and 28%, respectively. Ostabinol-C™ had no significant effect on callus tissue mechanical quality. Treatment with hPTH(1-31)NH₂ or hPTH(1-34)NH₂ resulted in similar effects. After 16 weeks of healing and withdrawal of Ostabinol-C™ during the second 8 weeks of healing, fracture strength, callus volume and callus tissue mechanical quality were similar to in vehicle-treated animals; compared to at 8 weeks, Ostabinol-C™-treated animals showed further increases in fracture strength and callus tissue mechanical quality (ultimate load, ultimate stress and elastic modulus increased by 23%, 88% and 87%, respectively) (24).

One-year treatment with Ostabinol-C™ (2, 10 and 25 µg/kg/day s.c.) effectively uncoupled bone turnover in skeletally immature cynomolgus monkeys (30-40 months old). Treatment was well tolerated and no hypercalcemia was observed. Significant increases in osteocalcin and significant decreases in C-telopeptide were observed, but no changes in the bone resorption marker deoxypyridinoline. Lumbar spine, femoral and tibial bone mass increased with treatment and significant increases in bone strength were seen. Moreover, osseous accretion in cancellous and endocortical proximal tibial bone compartments increased and a significant increase in tibial cancellous bone volume of more than 50% was reported; increases in cortical width and relative cortical area and reductions in medullary area were also detected in the tibial mid-diaphysis. The Ostabinol-C™-induced increases in bone mass were suggested to be due not only to increases in bone formation but also to reductions in bone resorption, since significant decreases in osteoclast surface were observed (25).

Safety

It has been reported that treatment of rat enterocytes with PTH induces phosphatidylcholine 3-kinase (PI-3)/mitogen-activated protein kinase (MAPK)-mediated proliferation and that primary hyperparathyroidism in humans is associated with a high incidence of colon cancer. Results from a study examining the carcinogenic potential of Ostabinol-C™ in the rat colon showed that

both Ostabinol-C™ and hPTH(1-34)NH₂ stimulated femoral bone formation. However, neither agent caused the appearance of aberrant crypts in the colon, an indication of the initiation of colon carcinogenesis, nor did they increase the number of aberrant crypt foci induced by the colon carcinogen azoxymethane (26).

The safety, tolerability and pharmacokinetics of single doses of Ostabinol-C™ (10, 20, 40, 80 or 160 µg s.c.) were examined in a randomized, double-blind, placebo-controlled, escalating-dose phase I study in 40 healthy older adults (45-73 years). C_{max} values were dose-proportional and mean t_{max} and t_{1/2} values were 0.25-0.75 h and 0.83-1.12 h, respectively. The agent was concluded to be safe and well tolerated after single s.c. doses up to 80 µg, but poor tolerability was noted in females receiving the highest dose. No significant alterations in ECGs were seen. However, dose-dependent increases in heart rate were observed. The most common adverse events were nausea, headache, vomiting, back pain and dizziness. Only 1 female subject treated with the highest dose exhibited a single total serum calcium value above the normal range (2.65 mmol/l). Biological activity of the agent was suggested by significant increases in urinary cAMP seen at all doses and significant increases in plasma cAMP detected at doses of 80 and 160 µg (27).

Clinical Studies

Three phase I trials of injectable Ostabinol-C™ have been completed in about 100 subjects and the product is currently undergoing phase II development for the treatment of osteoporosis. A phase II trial has enrolled 261 postmenopausal women with low BMD who will receive one of four Ostabinol-C™ doses or placebo for up to 1 year. A topical gel formulation of Ostabinol-C™ is also undergoing phase II testing for the treatment of psoriasis (28).

Source

Zelos Therapeutics, Inc. (US); collaboration with Nektar Therapeutics for a pulmonary formulation of Ostabinol-C™ for osteoporosis.

References

1. Morley, P., Neugebauer, W., Ross, V.J.S., Whitfield, J.F., Willick, G.E., Barbier, J.-R. (National Research Council of Canada). *Parathyroid hormone analogues for the treatment of osteoporosis*. EP 1352912, US 5955425, WO 9805683.
2. Barbier, J.-R., Neugebauer, W., Morley, P., Ross, V., Soska, M., Whitfield, J.F., Willick, G. *Bioactivities and secondary structures of constrained analogues of human parathyroid hormone: Cyclic lactams of the receptor binding region*. J Med Chem 1997, 40(9): 1373-80.
3. Barbier, J.-R., MacLean, S., Morley, P., Whitfield, J.F., Willick, G.E. *Structure and activities of constrained analogues of human parathyroid hormone and parathyroid hormone-related peptide: Implications for receptor-activating conformations of the hormones*. Biochemistry 2000, 39(47): 14522-30.
4. Prous Science Drug R&D Backgrounders: *Osteoporosis: online publication*. Updated July 13, 2006.
5. Sambrook, P., Cooper, C. *Osteoporosis*. Lancet 2006, 367(9527): 2010-8.
6. Dempster, D.W., Cosman, F., Parisien, M., Shen, V., Lindsay, R. *Anabolic actions of parathyroid hormone on bone*. Endocr Rev 1993, 14(6): 690-709.
7. Morley, P., Whitfield, J.F., Willick, G.E. *Anabolic effects of parathyroid hormone on bone*. Trends Endocr Metab 1997, 8: 225-31.
8. Whitfield, J.F. *Osteoporosis-treating parathyroid hormone peptides. What are they? What do they do? How might they do it?* Curr Opin Invest Drugs 2006, 7(4): 349-59.
9. Crandall, C. *Parathyroid hormone for treatment of osteoporosis*. Arch Intern Med 2002, 162(20): 2297-309.
10. Revel, L., Sorbera, L.A., Martin, L. *Teriparatide*. Drugs Fut 2000, 25(8): 803-8.
11. Sorbera, L.A., Leeson, P.A. *ALX1-11*. Drugs Fut 2000, 25(10): 1007-10.
12. Whitfield, J.F., Morley, P., Willick, G.E., Ross, V., Barbier, J.-R., Isaacs, R.J., Ohannessian-Barry, L. *Stimulation of the growth of femoral trabecular bone in ovariectomized rats by the novel parathyroid hormone fragment, hPTH-(1-31)NH₂ (Ostabinol)*. Calcif Tissue Int 1996, 58(2): 81-7.
13. Rixon, R.H., Whitfield, J.F., Gagnon, L. et al. *Parathyroid hormone fragments may stimulate bone growth in ovariectomized rats by activating adenylyl cyclase*. J Bone Miner Res 1994, 9(8): 1179-89.
14. Whitfield, J.F., Morley, P., Ross, V. et al. *The hypotensive actions of osteogenic and non-osteogenic parathyroid hormone fragments*. Calcif Tissue Int 1997, 60(3): 302-8.
15. Whitfield, J.F., Morley, P., Willick, G., Langille, R., Ross, V., MacLean, S., Barbier, J.-R. *Cyclization by a specific lactam increases the ability of human parathyroid hormone (hPTH)-(1-31)NH₂ to stimulate bone growth in ovariectomized rats*. J Bone Miner Res 1997, 12(8): 1246-52.
16. Whitfield, J.F., Morley, P., Willick, G., Barbier, J., MacLean, S., Ross, V. *Estratriene-3-ol, an activator of non-genomic estrogen-like signaling (ANGELS), does not stimulate bone growth in ovariectomized rats*. J Bone Miner Res 2001, 16(Suppl. 1): Abst SA502.
17. Morley, P., Whitfield, J.F., Willick, G.E. et al. *The effect of monocyclic and bicyclic analogs of human parathyroid hormone (hPTH-(1-31)NH₂) on bone formation and mechanical strength in ovariectomized rats*. Calcif Tissue Int 2001, 68(2): 95-101.
18. Whitfield, J.F., Morley, P., Willick, G., MacLean, S., Ross, V., Isaacs, R.J., Barbier, J.-R. *Comparison of the abilities of human parathyroid hormone (hPTH)-(1-34) and [Leu²⁷]-cyclo(Glu²²-Lys²⁶)-hPTH-(1-31)NH₂ to stimulate femoral trabecular bone growth in ovariectomized rats*. Calcif Tissue Int 1998, 63(5): 423-8.
19. Whitfield, J.F., Morley, P., Willick, G.E., MacLean, S., Ross, V., Barbier, J.-R., Isaacs, R.J. *Stimulation of femoral trabecular bone growth in ovariectomized rats by human parathyroid hormone (hPTH)-(1-30)NH₂*. Calcif Tissue Int 1999, 65(2): 143-7.

20. Morley, P., Whitfield, J.F., Willick, G.E. et al. *Prolonged low-dose infusion of human parathyroid hormone does not increase femoral cancellous bone volume in ovariectomized rats*. Eur J Endocrinol 1999, 141(1): 70-4.

21. Whitfield, J.F., Morley, P., Fraher, L. et al. *The stimulation of vertebral and tibial bone growth by the parathyroid hormone fragments, hPTH-(1-31)NH₂, [Leu²⁷]cyclo(Glu²²-Lys²⁶)hPTH-(1-31)NH₂, and hPTH-(1-30)NH₂*. Calcif Tissue Int 2000, 66(4): 307-12.

22. Shen, H., MacLean, S., Ross, V. et al. *[Leu²⁷]cyclo(Glu²²-Lys²⁶)hPTH 1-31NH₂ potently preserves bone structure after ovariectomy by effectively inhibiting bone resorption*. 27th Annu Meet Am Soc Bone Miner Res (ASBMR) (Sept 23-27, Nashville) 2005, Abst M403.

23. Morley, P., Jolette, J., Smith, S.Y., Turner, C.H., Moreau, I., Mayer, J. *Ostabinol-C: A novel parathyroid hormone analogue increases bone formation and strength in rats treated for 26 weeks*. IOF World Cong Osteoporos (June 2-6, Toronto) 2006, Abst P345MO.

24. Andreassen, T.T., Willick, G.E., Morley, P., Whitfield, J.F. *Treatment with parathyroid hormone hPTH(1-34), hPTH(1-31), and monocyclic hPTH(1-31) enhances fracture strength and callus amount after withdrawal fracture strength and callus mechanical quality continue to increase*. Calcif Tissue Int 2004, 74(4): 351-6.

25. Jolette, J., Smith, S.Y., Moreau, I.A., Turner, C.H., Mayer, J., Rushton, B., Morley, P. *Ostabinol-C™: A novel parathyroid hormone analogue uncouples bone turnover in monkeys treated for 1-year*. 27th Annu Meet Am Soc Bone Miner Res (ASBMR) (Sept 23-27, Nashville) 2005, Abst M409.

26. Whitfield, J., Bird, R.P., Morley, P., Willick, G.E., Barbier, J.-R., MacLean, S., Ross, V. *The effects of parathyroid hormone fragments on bone formation and their lack of effects on the initiation of colon carcinogenesis in rats as indicated by preneoplastic aberrant crypt formation*. Cancer Lett 2003, 200(2): 107-13.

27. Barclay, C.L., Anderson, R., Champoux-Knott, L., Morelli, G., Morley, P. *Ostabinol-C™: A phase I trial to assess its safety, tolerability and pharmacokinetics in healthy older adults*. Osteoporosis Int [6th Eur Congr Clin Econ Aspects Osteoporos Osteoarthr (ECCEO) (March 15-18, Vienna) 2006] 2006, Abst P193.

28. *Zelos completes enrollment in two phase II studies of Ostabinol-C*. DrugDailyNews.com February 14, 2006.